《概率论与数理统计》
一、适用专业
数学
二、考试内容
1、概率论:随机事件与概率、随机变量及其分布、多维随机变量及其分布、大数定律及中心极限定理
理解样本空间、随机事件的概念,掌握随机事件的关系与运算;掌握计算概率的古典方法;掌握概率的基本性质;了解条件概率的意义及性质,熟练掌握乘法公式、全概率公式、贝叶斯公式。熟练掌握分布函数与分布列、概率密度函数相互转化的方法;会计算数学期望和方差;掌握常用随机变量的分布;了解随机变量函数的分布。理解联合分布函数的概念及其性质;熟练掌握联合分布列求边际分布列、联合密度函数求边际密度函数的方法;理解随机变量的独立性;会计算协方差和相关系数;了解二维随机变量函数的分布、条件分布和条件期望。了解依概率收敛和依分布收敛的概念及性质;理解大数定律和中心极限定理,会利用中心极限定理求解近似概率问题。
2、数理统计:参数估计、假设检验、方差分析及回归分析
了解总体和样本的概念;理解统计量的概念,熟练掌握正态总体的样本均值的抽样分布;掌握三大抽样分布。了解点估计的概念;理解估计的无偏性、有效性和相合性;熟练掌握参数的矩估计和最大似然估计;熟练掌握正态总体参数的置信区间;了解最小方差无偏估计和贝叶斯估计的概念。理解假设检验的基本思想与概念;掌握正态总体参数的假设检验。熟练掌握单因素方差分析;熟练掌握一元线性回归方程的求法,掌握回归方程的显著性检验。
三、推荐书目:
茆诗松,程依明,濮晓龙.《概率论与数理统计教程》(第三版),北京:高等教育出版社,2019.