福州大学数学与计算机科学学院计算机图形学与多媒体/人工智能研究生导师介绍:夏又生

导师信息
福州大学研究生院
福州大学2025年考研专业课复习资料
26考研全科上岸规划营「择校•规划•备考」

福州大学数学与计算机科学学院计算机图形学与多媒体/人工智能研究生导师夏又生介绍如下:

基本信息

姓名 夏又生

职称 教授 

职务 博士生导师 

主讲课程 数值计算方法,人工神经网络,神经动力学优化算法及应用,神经计算原理及应用 

研究方向 智能计算与模式识别 

办公室 数计学院2号楼106 

电子邮件  ysxia@fzu.edu.cn

联系电话 0591-22865171 

个人简介

研究兴趣:图像配准与融合,盲图像恢复与重建,图像超分辨,随机优化算法

讲授课程

本科生:数值计算方法,人工神经网络等

硕士生:神经动力学优化算法及应用,神经计算原理及应用

主持科研项目

(1) 基于广义约束最小绝对偏差估计的盲图像恢复神经网络算法,国家自然科学基金面上项目,2009.1-2011.12。

(2) 有色噪声下基于噪声约束最小均方估计的语音增强算法, 国家自然科学基金面上项目,2012.1-2015.12。

获奖

基于优化的非线性系统智能建模与控制,2010年高等学校科学研究优秀成果奖自然科学奖二等奖(排名第二)

主要论文

1.系统参数辩识与语音增强研究工作

[1] 夏又生, Z.P. Deng,X. Zheng,  Analysis and application of a novel fast algorithm for 2-D ARMA model parameter estimation, Automatica, vol. 49, pp 3056-3064, 2013.

[2] 夏又生, M.   Kamel, and  H. Leung ,A Fast Algorithm for  AR  Parameter Estimation Using A Novel Constrained Least Squares method,Neural Networks, vol. 33, pp. 396-405, 2010.
 
[3] 夏又生 M. Kamel, A generalized  least absolute deviation method for  parameter estimation of autoregressive signals, IEEE Transactions on Neural Networks,vol.19,107-118, 2008 .
 
[4] Y.S. Xia, L. Henry, and  N. Xie ``A New Regression estimator with  neural network realization",   IEEE Transactions on Signal Processing, vol. 53, pp.672-685, 2005.
 
[5] 陈志庆, 夏又生,A Fast Algorithm For Vector ARMA Parameter Estimation, International Conference on Electrical and Engineering and Automatic Control,  vol. 3, pp178-181, Zibo, China, 2010.

[6] 夏又生, 俞颖, Speech Enhancement Using Generalized  Least Absolute Deviation Estimation,International Conference on Audio, Language and Image Processing,vol. 1, pp. 64-68,  Shanghai, China, 2010 .

2. 数据融合研究工作:

[1] 夏又生 and H.  Leung,Performance analysis of statistical optimal data fusion algorithms, Information Science, 2014.

[2] 夏又生 and H.  Leung,A Fast Learning Algorithm for Blind Data Fusion Using A Novel L2-Norm Estimation,IEEE Sensors Journal, vol.14, pp. 666 – 672, 2014.

[3] 夏又生 M. Kamel, Cooperative  learning algorithms for  data fusion using novel  L1  estimation, IEEE Transactions on Signal Processing, vol. 56, 1083-1095,2008 .
 
[4] 夏又生 and M. Kamel, A Measurement Fusion Method for Nonlinear System Identification and Its Cooperative Learning Algorithm , Neural Computation, Vol. 19, pp. 1589-1632, 2007.
 
[5] 夏又生, Leung H, Nonlinear spatial-temporal prediction based on optimal fusion, IEEE TRANSACTIONS ON NEURAL NETWORKS , vol. 17 , 975-988   Published:  2006
 
3. 图像恢复与重建研究工作

[1] 夏又生,Sun C., and Zheng WX,  A  Discrete-Time Neural Network for Fast Solving Large  Linear L1-norm Estimation Problems  and its Application to Image Restoration,    IEEE Transactions on Neural Networks and Learning Systems, vol.23 ,  pp. 812 - 820 , 2012

[2] 石泉斌,夏又生*,Fast multi-channel  image reconstruction  using a  novel two-dimensional algorithm, Multimedia Tools and Applications , vol. 63, Feb, 2013 online Published。

[3] 夏又生, Z.P. Deng,X. Zheng,  Analysis and application of a novel fast algorithm for 2-D ARMA model parameter estimation, Automatica, vol. 49, pp 3056-3064, 2013.

[4] 夏又生 and M. Kamel, Novel cooperative  neural fusion algorithms for  image restoration and image fusion, IEEE Transactions on Image Processing, vol. 16, pp. 367-381, 2007 .
 
[5] 夏又生,  A fast  algorithm for constrained GLAD estimation with application to image restoration, Proceeding of World Congress on Intelligent Control
and Automation, July, Jinan, China, pp.729-734,2010.
 
[6] 庄金莲,夏又生,  An  Improved Regularization Approach for Blind Restoration of multichannel Imagery,International Congress on Image and Signal Processing,上海,2011年10月。
 
[7] 文虎儿, 夏又生,  A SIFT operator -based Image Registration Using Cross-Correlation Coefficient, International Congress on Image and Signal Processing,上海,2011年10月。
 
4.智能优化算法的研究工作

[1] 夏又生, 陈天平,J. Shan,A novel  iteration  method for computing generalized inverse,Neural Computation, vol.26, pp. 449-465 , 2014 

[2] 夏又生, A Compact Cooperative Recurrent Neural Network for Computing General Constrained L-1 Norm Estimators,IEEE Transactions on Signal Processing, vol.57, pp. 3693-3697,2009。
 
[3] 夏又生, G. Feng, and J. Wang, ``A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints”, IEEE Transactions on Neural Networks, vol.19,1340-1353,  2008

[4] 夏又生and M. Kamel, ``Cooperative Recurrent Neural Networks for solving L1 estimation problems with general linear constraints," Neural Computation, vol. 20, pp.844-872, 2008.
 
[5] 夏又生, New cooperative recurrent neural networks for solving constrained variational inequality problems, Science in  China: Information sciences, vol.52, 1766-177, 2009.

[6] Sun  C., 夏又生,  An analysis of a neural dynamical approach to solving optimization Problems,IEEE Transactions on Automatic Control,vol. 54, pp. 1972-1977,2009.

[7] 夏又生and  G.  Feng, ``A New Neural Network for Solving
Nonlinear Projection equations,"  Neural  Networks, vol. 20, pp. 577-589, 2007.
 
[8] 夏又生,  G. Feng, and M. S Kamel, Development and analysis of  neural dynamical approaches to solving nonlinear programming problems,   IEEE Transactions on  Automatic Control, Vol 52, pp. 2154-2159, 2007.
 
[9] 夏又生, G. Feng, and J. Wang, ``A Primal-Dual Neural  Network
for On-Line Resolving Constrained Kinematic Redundancy," IEEE Transactions on Systems, Man and Cybernetics - Part B, vol. 35, pp. 54-64, 2005.
 
[10] 夏又生, ``An extended projection neural network for constrained optimization",   Neural Computation, vol. 16, no. 4, pp. 863-883,  2004.
 
[11] 夏又生,  ``Further results on global convergence and stability of  globally projected dynamical systems,"  Journal of Optimization Theory  and Applications, vol. 122, pp.627-149, 2004.

[12] 夏又生 and F. Gang, ``On Convergence Rate of Projection Neural
Networks,"   IEEE Transactions on  Automatic Control, vol.
49, pp. 91-96, 2004.

[13] 夏又生and J. Wang, ``A General Projection neural network for solving monotone variational inequality and related optimization problems",   IEEE Transactions Neural Networks}, vol.15, pp. 318-328, 2004.

[14] 夏又生,J. Wang, and L. M. Fork, ``Grasping Force Optimization for Multifingered Robotic Hands Using a Recurrent  Neural Network,"   IEEE Transactions on Robotics and Automation, vol. 20, pp. 549-554, 2004.

查看全文
更多考研资讯、考研经验、考研资料等欢迎关注微信公众“今年我考研(jinniankaoyan)”

考研热点

热门课程

考研资料

更多

相关文章